skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stephenson, Torrey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Apex consumers are declining worldwide. While the effects of apex predator declines on ecosystems are widely documented, the cascading effects of apex scavenger declines are poorly understood. We evaluated whether disease‐induced declines of an apex scavenger, the Tasmanian devil (Sarcophilus harrisii), increased carrion use by invertebrate scavengers. We manipulated devil access to 36 carcasses across a gradient of devil density from east to west Tasmania and measured carcass use by invertebrates. We found the amount of carcass removed within 5 days was 3.58 times lower at sites with the lowest devil densities. Adult carrion beetle (Ptomaphila lacrymosa) and blow fly (Calliphoridae) larvae abundances were two times higher at open‐access carcasses at low‐density sites than at intermediate‐ and high‐density sites. Adult beetles persisted for 10 days at the low‐density site but declined after 5 days when devils had access to carcasses in intermediate‐ and high‐density sites. Blow fly larvae abundance was not affected by devils in the low‐density site but decreased with devil access in intermediate‐ and high‐density sites. Our results suggest that apex scavenger declines may increase invertebrate scavenger abundance and their contribution to carrion decomposition, with potential cascading effects on nutrient cycling and ecosystems. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Abstract Forest disturbance has well-characterized effects on soil microbial communities in tropical and northern hemisphere ecosystems, but little is known regarding effects of disturbance in temperate forests of the southern hemisphere. To address this question, we collected soils from intact and degraded Eucalyptus forests along an east–west transect across Tasmania, Australia, and characterized prokaryotic and fungal communities using amplicon sequencing. Forest degradation altered soil microbial community composition and function, with consistent patterns across soil horizons and regions of Tasmania. Responses of prokaryotic communities included decreased relative abundance of Acidobacteriota, nitrifying archaea, and methane-oxidizing prokaryotes in the degraded forest sites, while fungal responses included decreased relative abundance of some saprotrophic taxa (e.g. litter saprotrophs). Forest degradation also reduced network connectivity in prokaryotic communities and increased the importance of dispersal limitation in assembling both prokaryotic and fungal communities, suggesting recolonization dynamics drive microbial composition following disturbance. Further, changes in microbial functional groups reflected changes in soil chemical properties—reductions in nitrifying microorganisms corresponded with reduced NO3-N pools in the degraded soils. Overall, our results show that soil microbiota are highly responsive to forest degradation in eucalypt forests and demonstrate that microbial responses to degradation will drive changes in key forest ecosystem functions. 
    more » « less
  3. Global apex scavenger declines strongly alter food web dynamics, but studies rarely test whether trophic downgrading impacts ecosystem functions. Here, we leverage a unique, disease‐induced gradient in Tasmanian devil (Sarcophilus harrisi) population densities to assess feedbacks between carcass persistence, subordinate scavenger guilds, and biogeochemical cycling. We further explored interkingdom and seasonal interactions by manipulating carcass access and replicating experiments in warmer, drier summer versus cooler, wetter winter periods. We show Tasmanian devil declines significantly extend carcass persistence and increase the flux of carcass‐derived nutrients belowground (e.g., by 18–134‐fold for ammonium). Greater nutrient availability reduces soil microbiome diversity by up to 26%, increasing the relative abundance of putative zoonotic pathogens. Nutrient subsidies also shift microbial communities toward faster‐growing taxa that invest less energy in resource acquisition, with implications for soil carbon sequestration. Rates of carcass decomposition were reduced in the winter, dampening soil biogeochemical responses and interkingdom competition. Notably, while less efficient scavenger guilds clearly facilitate carcass consumption, they were not able to fill the functional role of apex scavengers. Our study illustrates how trophic downgrading effects can ripple across all levels of ecological organization. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  4. Abstract Tasmanian eucalypt forests are among the most carbon‐dense in the world, but projected climate change could destabilize this critical carbon sink. While the impact of abiotic factors on forest ecosystem carbon dynamics have received considerable attention, biotic factors such as the input of animal scat are less understood. Tasmanian devils (Sarcophilus harrisii)—an osteophageous scavenger that can ingest and solubilize nutrients locked in bone material—may subsidize plant and microbial productivity by concentrating bioavailable nutrients (e.g., nitrogen and phosphorus) in scat latrines. However, dramatic declines in devil population densities, driven by the spread of a transmissible cancer, may have underappreciated consequences for soil organic carbon (SOC) storage and forest productivity by altering nutrient cycling. Here, we fuse experimental data and modeling to quantify and predict future changes to forest productivity and SOC under various climate and scat‐quality futures. We find that devil scat significantly increases concentrations of nitrogen, ammonium, phosphorus, and phosphate in the soil and shifts soil microbial communities toward those dominated byr‐selected (e.g., fast‐growing) phyla. Further, under expected increases in temperature and changes in precipitation, devil scat inputs are projected to increase above‐ and below‐ground net primary productivity and microbial biomass carbon through 2100. In contrast, when devil scat is replaced by lower‐quality scat (e.g., from non‐osteophageous scavengers and herbivores), forest carbon pools are likely to increase more slowly, or in some cases, decline. Together, our results suggest often overlooked biotic factors will interact with climate change to drive current and future carbon pool dynamics in Tasmanian forests. 
    more » « less